A better gap penalty for pairwise SVM

نویسندگان

  • Hon Nian Chua
  • Wing-Kin Sung
چکیده

SVM-Pairwise was a major breakthrough in remote homology detection techniques, significantly outperforming previous approaches. This approach has been extensively evaluated and cited by later works, and is frequently taken as a benchmark. No known work however, has examined the gap penalty model employed by SVM-Pairwise. In this paper, we study in depth the relevance and effectiveness of SVM-Pairwise’s gap penalty model with respect to the homology detection task. We have identified some limitations in this model that prevented the SVM-Pairwise algorithm from realizing its full potential and also studied several ways to overcome them. We discovered a more appropriate gap penalty model that significantly improves the performance of SVM-Pairwise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new classification method based on pairwise SVM for facial age estimation

This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...

متن کامل

Improving ClustalX Alignments with TuneClustalX

TuneClustalX facilitates adjusting the gap penalties of ClustalX multiple sequence alignments in order to improve the quality of the alignments. As an example the application is used to determine initial gap penalties that are superior to the default gap penalties for protein alignments. The choice of gap penalties strongly affects the quality of the alignment. TuneClustalX, compiled for Macint...

متن کامل

Revisiting gap locations in amino acid sequence alignments and a proposal for a method to improve them by introducing solvent accessibility

In comparative modeling, the quality of amino acid sequence alignment still constitutes a major bottleneck in the generation of high quality models of protein three-dimensional (3D) structures. Substantial efforts have been made to improve alignment quality by revising the substitution matrix, introducing multiple sequences, replacing dynamic programming with hidden Markov models, and incorpora...

متن کامل

An Improved 1-norm SVM for Simultaneous Classification and Variable Selection

We propose a novel extension of the 1-norm support vector machine (SVM) for simultaneous feature selection and classification. The new algorithm penalizes the empirical hinge loss by the adaptively weighted 1-norm penalty in which the weights are computed by the 2-norm SVM. Hence the new algorithm is called the hybrid SVM. Simulation and real data examples show that the hybrid SVM not only ofte...

متن کامل

Statistical evaluation and comparison of a pairwise alignment algorithm that a priori assigns the number of gaps rather than employing gap penalties

MOTIVATION Although pairwise sequence alignment is essential in comparative genomic sequence analysis, it has proven difficult to precisely determine the gap penalties for a given pair of sequences. A common practice is to employ default penalty values. However, there are a number of problems associated with using gap penalties. First, alignment results can vary depending on the gap penalties, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005